Thành viên:Nguyenngocan 1991

Từ điển mở Wiktionary

CƠ BẢN VỀ LÝ THUYẾT ĐỒ THỊ[sửa]

Lý thuyết đồ thị là một lĩnh vực đã có từ lâu và có nhiều ứng dụng hiện đại. Những tư tưởng cơ bản của lý thuyết đồ thị được đề xuất vào những năm đầu của thế kỷ 18 bởi nhà toán học lỗi lạc người Thụy Sỹ Lenhard Eurler. Chính ông là người đã sử dụng đồ thị để giải bài toán nổi tiếng về các cái cầu ở thành phố Konigsberg.

Đồ thị được sử dụng để giải các bài toán trong nhiều lĩnh vực khác nhau. Chẳng hạn, đồ thị có thể sử dụng để xác định các mạch vòng trong vấn đề giải tích mạch điện. Chúng ta có thể phân biệt các hợp chất hóa học hữu cơ khác nhau với cùng công thức phân tử nhưng khác nhau về cấu trúc phân tử nhờ đồ thị. Chúng ta có thể xác định hai máy tính trong mạng có thể trao đổi thông tin được với nhau hay không nhờ mô hình đồ thị của mạng máy tính. Đồ thị có trọng số trên các cạnh có thể sử dụng để giải các bài toán như: Tìm đường đi ngắn nhất giữa hai thành phố trong mạng giao thông. Chúng ta cũng còn sử dụng đồ thị để giải các bài toán về lập lịch, thời khóa biểu, và phân bố tần số cho các trạm phát thanh và truyền hình…


ĐỊNH NGHĨA ĐỒ THỊ[sửa]

Đồ thị là một cấu trúc rời rạc bao gồm các đỉnh và các cạnh nối các đỉnh này. Chúng ta phân biệt các loại đồ thị khác nhau bởi kiểu và số lượng cạnh nối hai đỉnh nào đó của đồ thị. Để có thể hình dung được tại sao lại cần đến các loại đồ thị khác nhau, chúng ta sẽ nêu ví dụ sử dụng chúng để mô tả một mạng máy tính. Giả sử ta có một mạng gồm các máy tính và các kênh điện thoại (gọi tắt là kênh thoại) nối các máy tính này. Chúng ta có thể biểu diễn các vị trí đặt náy tính bởi các điểm và các kênh thoại nối chúng bởi các đoạn nối, xem hình 1.

Hình 1. Sơ đồ mạng máy tính.

Nhận thấy rằng trong mạng ở hình 1, giữa hai máy bất kỳ chỉ có nhiều nhất là một kênh thoại nối chúng, kênh thoại naỳ cho phép liên lạc cả hai chiều và không có máy tính nào lại được nối với chính nó. Sơ đồ mạng máy cho trong hình 1 được gọi là đơn đồ thị vô hướng. Ta đi đến định nghĩa sau

Định nghĩa 1.[sửa]

Đơn đồ thị vô hướng G = (V,E) bao gồm V là tập các đỉnh, và E là tập các cặp không có thứ tự gồm hai phần tử khác nhau của V gọi là các cạnh. Trong trường hợp giữa hai máy tính nào đó thường xuyên phải truyền tải nhiều thông tin người ta phải nối hai máy nàu bởi nhiều kênh thoại. Mạng với đa kênh thoại giữa các máy được cho trong hình 2.

Hình 2. Sơ đồ mạng máy tính với đa kênh thoại.

Định nghĩa 2.[sửa]

Đa đồ thị vô hướng G= (V, E) bao gồm V là tập các đỉnh, và E là tập các cặp không có thứ tự gồm hai phần tử khác nhau của V gọi là các cạnh. Hai cạnh e1 và e2 được gọi là cạnh lặp nếu chúng cùng tương ứng với một cặp đỉnh.

Hình 3. Sơ đồ mạng máy tính với kênh thoại thông báo.

Rõ ràng mỗi đơn đồ thị đều là đa đồ thị, nhưng không phải đa đồ thị nào cũng là đơn đồ thị, vì trong đa đồ thị có thể có hai (hoặc nhiều hơn) cạnh nối một cặp đỉnh nào đó. Trong mạng máy tính có thể có những kênh thoại nối một náy nào đó với chính nó (chẳng hạn vời mục đính thông báo). Mạng như vậy được cho trong hình 3. Khi đó đa đồ thị không thể mô tả được mạng như vậy, bởi vì có những khuyên (cạnh nối một đỉnh với chính nó). Trong trường hợp nàychúng ta cần sử dụng đến khái niệm giả đồ thị vô hướng, được định nghĩa như sau:

Định nghĩa 3.[sửa]

Giả đồ thị vô hướng G = (V, E) bao gồm V là tập các đỉnh và E là tập các cặp không có thứ tự gồm hai phần tử (không nhất thiết phải khác nhau) của V gọi là cạnh. Cạnh e được gọi là khuyên nếu nó có dạng e = (u, u).

Hình 4. Mạng máy tính với kênh thoại một chiều

Các kênh thoại trong mạng máy tính có thể chỉ cho phép truyền tin theo một chiều. Chẳng hạn, trong hình 4 máy chủ ở Hà Nội chỉ có thể nhận tin từ các máy ở địa phương, có một số máy chỉ có thể gửi tin đi, còn các kênh thoại cho phép truyền tin theo cả hai chiều được thay thế bởi hai cạnh có hướng ngược chiều nhau. Ta đi đến định nghĩa sau.

Định nghĩa 4.[sửa]

Đơn đồ thị có hướng G = (V, E) bao gồm V là tập các đỉnh và E là tập các cặp có thứ tự gồm hai phần tử khác nhau của V gọi là các cung. Nếu trong mạng có thể có đa kênh thoại một chiều, ta sẽ phải sử dụng đến khái niệm đa đồ thị có hướng:

Định nghĩa 5.[sửa]

Đa đồ thị có hướng G = (V, E) bao gồm V là tập các đỉnh và E là tập các cặp có thứ tự gồm hai phần tử khác nhau của V gọi là các cung. Hai cung e1, e2 tương ứng với cùng một cặp đỉnh được gọi là cung lặp. Trong các phần tiếp theo chủ yếu chúng ta sẽ làm việc với đơn đồ thị vô hướng và đơn đồ thị có hướng. Vì vậy, để cho ngắn gọn, ta sẽ bỏ qua tính từ đơn khi nhắc đến chúng.

CÁC THUẬT NGỮ CƠ BẢN[sửa]

Trong mục này chúng ta sẽ trình bày một số thuật ngữ cơ bản của lý thuyết đồ thị. Trước tiên, ta xét các thuật ngữ mô tả các đỉnh và cạnh của đồ thị vô hướng.

Định nghĩa 1.[sửa]

Hai đỉnh u và v của đồ thị vô hướng G được gọi là kề nhau nếu (u,v) là cạnh của đồ thị G. Nếu e = (u, v) là cạnh của đồ thị ta nói cạnh này là liên thuộc với hai đỉnh u và v, hoặc cũng nói là nối đỉnh u và đỉnh v, đồng thời các đỉnh u và v sẽ được gọi là các đỉnh đầu của cạnh (u, v).

Để có thể biết có vao nhiêu cạnh liên thuộc với một đỉnh, ta đưa vào định nghĩa sau

Định nghĩa 2.[sửa]

Ta gọi bậc của đỉnh v trong đồ thị vô hướng là số cạnh liên thuộc với nó và sẽ ký hiệu là deg(v).


Hình 1. Đồ thị vô hướng
Thí dụ 1. Xét đồ thị cho trong hình 1, ta có 

deg(a) = 1, deg(b) = 4, deg(c) = 4, deg(f) = 3,

deg(d) = 1, deg(e) = 3, deg(g) = 0

Đỉnh bậc 0 gọi là đỉnh cô lập. Đỉnh bậc 1 được gọi là đỉnh treo. Trong ví dụ trên đỉnh g là đỉnh cô lập, a và d là các đỉnh treo. Bậc của đỉnh có tính chất sau:


Định lý 1. Giả sử G = (V, E) là đồ thị vô hướng với m cạnh. Khi đó tông bậc của tất cả các đỉnh bằng hai lần số cung.

Chứng minh. Rõ ràng mỗi cạnh e = (u, v) được tính một lần trong deg(u) và một lần trong deg(v). Từ đó suy ra tổng tất cả các bậc của các đỉnh bằng hai lần số cạnh.

Thí dụ 2. Đồ thị với n đỉnh có bậc là 6 có bao nhiêu cạnh?

Giải: Theo định lý 1 ta có 2m = 6n. Từ đó suy ra tổng các cạnh của đồ thị là 3n.

Hệ quả. Trong đồ thị vô hướng, số đỉnh bậc lẻ (nghĩa là có bậc là số lẻ) là một số chẵn.

Chứng minh. Thực vậy, gọi O và U tương ứng là tập đỉnh bậc lẻ và tập đỉnh bậc chẵn của đồ thị.

Do deg(v) là chẵn với v là đỉnh trong U nên tổng thứ nhất ở trên là số chẵn. Từ đó suy ra tổng thứ hai (chính là tổng bậc của các đỉnh bậc lẻ) cũng phải là số chẵn, do tất cả các số hạng của nó là số lẻ, nên tổng này phải gồm một số chẵn các số hạng. Vì vậy, số đỉnh bậc lẻ phải là số chẵn.

Ta xét các thuật ngữ tương tự cho đồ thị vô hướng.

Định nghĩa 3.[sửa]

Nếu e = (u, v) là cung của đồ thị có hướng G thì ta nói hai đỉnh u và v là kề nhau, và nói cung (u, v) nối đỉnh u với đỉnh v hoặc cũng nói cung này là đi ra khỏi đỉnh u và vào đỉnh v. Đỉnh u(v) sẽ được gị là đỉnh đầu (cuối) của cung (u,v).

Tương tự như khái niệm bậc, đối với đồ thị có hướng ta có khái niệm bán bậc ra và bán bậc vào của một đỉnh.

Định nghĩa 4.[sửa]

Ta gọi bán bậc ra (bán bậc vào) của đỉnh v trong đồ thị có hướng là số cung của đồ thị đi ra khỏi nó (đi vào nó)

Hình 2. Đồ thị có hướng